
Othello HP-67 40th / licence: Apache, Version 2.0

Othello for HP-67 & HP-97 (genuine)
Happy birthday to these mythical programmable calculators being 40 this year 2016.

First things first:
No calculator has been harmed during the making (debugging included) of this program :-)
Thank you to all people who helped me with the translation.

40+ year old joke: how do you fit 5 elephants into a Citroën 2CV ? Answer, 2 in the front, 2 in the back and 1 in the trunk.
Now seriously, how do you fit an Othello playing program in the 224 steps of a 1976 pocket calculator ? Well, my answer is on the next page.
This program will play against anyone on a 8 x 8 board, using only 21 memory registers and less than 200 program steps. It will never make the first place
in a championship, but the challenge was: can I fit a decent Othello program in a pocket calculator a million times less powerful than our phones 40 years
later. All we have here are 224 program steps, 26 registers and 4+1 more from the RPN stack, 4 flags et 3 subprogram levels, all this running at a whopping
30 steps a second.
At the time, it was the height of luxury! If only I had had one…

 page 0 Othello rules and HP-67 user’s guide. Hmm... or In fact yes, you’re right, there is no page 0 :-)
 pages 1 and 2 Introduction (this page) and complete program code, raw, uncommented on page 2.
 pages 3 to 5 "Vue d’ensemble", terminology and user’s guide: essentials about the code and related stuff
 page 6 Warning, if you carry on reading…
 page 7 to the end Allocation of memory registers and flags, entry points and commented code

If you want to reverse engineer my code from scratch for the fun, you will find all you need on page 2, nothing else needed.
If you’d like an overall presentation of what’s under the hood, read pages 3 to 5 before going back to page 2.
In short, the more you read on, the easier it is.

It's up to you how you use it. Happy reading!
 …and dont forget, with so many program steps left, you can write your own evaluation function : -)

Copyright 2016 Jean-Marc Verniajou

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �1 14

Othello HP-67 40th / licence: Apache, Version 2.0

The program code

 …OK, this is what we are here for!

Nowadays, we use high-level languages generating
many (tens or hundreds) "program steps" for every
single line of code we write.
So naturally here we enter into another world. Pure
happiness, in my case!

Here, we have less than 200 bytes for the program,
and some 21 memory registers of 7 bytes each.
All in all, a reasonable memory footprint.

Some HP-67 and 97 emulators allow for the
allocation of hundreds of additional memory
registers and thousands of programs steps for good
measure.
This would have been a different choice, negating all
the fun here.
This program runs on a genuine 67/97 and should
work on every emulator that scrupulously
reproduces the behavior of both calculators,
including their limitations, of course.

There are 25 steps and 10 registers left for
improvements. More if you find additional
optimisations. So, if you want to customize the code
for your 67/97, you have the means!

Please note:
Roll down instructions are written RDN instead of R
followed by a down arrow (I was too lazy here)

Instruction	 HP-97		
	mnemonic	 Key	code	
—————————	 —————	
*LBL	A		 21	11	
	 1	 01	
	 STO	E	 35	15	
	 8	 08	
	 .	 -62	
	 8	 08	
	 STO	B	 35	12	
	 CLX	 -51	
	 STO	C	 35	13	
	 STO	D	 35	14	
	*LBL	a	 21	16	11	
	 CLX	 -51	
	 STO	9	 35	09	
	 STO	A	 35	11	
	 RCL	B	 36	12	
	 CF2	 16	22	02	
	 GSB	9	 23	09	
	 X=0?	 16-43	
	 F3?	 16	23	03	
	 GTO	0	 22	00	
	*LBL	b	 21	16	12	
	 2	 02	
	 .	 -62	
	 2	 02	
	 STO	A	 35	11	
	*LBL	c	 21	16	13	
	 SF0	 16	21	00	
	*LBL	d	 21	16	14	
	 RCL	B	 36	12	
	 STO	I	 35	46	
	*LBL	e	 21	16	15	
	 RCL	A	 36	11	
	 1	 01	
	 .	 -62	
	 1	 01	
	 -	 -45	
	 X=0?	 16-43	
	 CF0	 16	22	00	

	 X=0?	 16-43	
	 SF2	 16	21	02	
	 RCL	I	 36	46	
	 +	 -55	
	 GSB	9	 23	09	
	 F3?	 16	23	03	
	 CLX	 -51	
	 X=0?	 16-43	
	 GTO	0	 22	00	
	 X<0?	 16-45	
	 GTO	1	 22	01	
	 .	 -62	
	 1	 01	
	 ST+	9	 35-55	09	
	 GTO	e	 22	16	15	
	*LBL	1	 21	01	
	 F1?	 16	23	01	
	 X>0?	 16-44	
	 GTO	0	 22	00	
	 F0?	 16	23	00	
	 X>0?	 16-44	
	 GTO	0	 22	00	
	 CF0	 16	22	00	
	 GTO	d	 22	16	14	
	*LBL	0	 21	00	
	 RCL	9	 36	09	
	 FRC	 16	44	
	 ST-	9	 35-45	09	
	 1	 01	
	 0	 00	
	 x	 -35	
	 x	 -35	
	 ST-	9	 35-45	09	
	 RCL	A	 36	11	
	 .	 -62	
	 1	 01	
	 -	 -45	
	 STO	A	 35	11	
	 X<0?	 16-45	
	 GTO	2	 22	02	
	 FRC	 16	44	

	 .	 -62	
	 2	 02	
	 X>Y?	 16-34	
	 GTO	c	 22	16	13	
	 LSTX	 16-63	
	 INT	 16	34	
	 +	 -55	
	 STO	A	 35	11	
	 GTO	c	 22	16	13	
	*LBL	2	 21	02	
	 F1?	 16	23	01	
	 GTO	3	 22	03	
	 RCL	B	 36	12	
	 +	 -55	
	 STO	B	 35	12	
	 RCL	C	 36	13	
	 RCL	9	 36	09	
	 X≤Y?	 16-35	
	 GTO	2	 22	02	
	 STO	C	 35	13	
	 LSTX	 16-63	
	 STO	D	 35	14	
	*LBL	2	 21	02	
	 RCL	B	 36	12	
	 X>0?	 16-44	
	 GTO	a	 22	16	11	
	 RCL	D	 36	14	
	 X=0?	 16-43	
	 GTO	3	 22	03	
	 STO	B	 35	12	
	 R/S	 51	
	 SF1	 16	21	01	
	 GTO	b	 22	16	12	
	*LBL	3	 21	03	
	 RCL	E	 36	15	
	 0	 00	
	 X≤y?	 16-36	
	 R/S	 51	
	*LBL	B	 21	12	
	 CF1	 16	22	01	
	 X=0?	 16-43	

	 GTO	A	 22	11	
	 STO	B	 35	12	
	 SF1	 16	21	01	
	 SF0	 16	21	00	
	 1	 01	
	 CHS	 -22	
	 STO	E	 35	15	
	 GTO	a	 22	16	11	
	*LBL	9	 21	09	
	 STO	I	 35	46	
	 SF3	 16	21	03	
	 INT	 16	34	
	 X=0?	 16-43	
	 RTN	 24	
	 9	 09	
	 X=Y?	 16-33	
	 RTN	 24	
	 LSTX	 16-63	
	 FRC	 16	44	
	 1	 01	
	 0	 00	
	 x	 -35	
	 X≠0?	 16-42	
	 X=Y?	 16-33	
	 RTN	 24	
	 CF3	 16	22	03	
	RCL	(i)	 36	45	
	 X<>Y	 -41	
	 4	 04	
	 X<>Y	 -41	
	 Yx	 31	
	 STO	0	 35	00	
	 ÷	 -24	
	 FRC	 16	44	
	 4	 04	
	 ST÷	0	 35-24	00	
	 x	 -35	
	 INT	 16	34	
	 1	 01	
	 -	 -45	
	 RCL	E	 36	15	

	 STx	0	 35-35	00	
	 x	 -35	
	 x<0?	 16-45	
	 RTN	 24	
	 F1?	 16	23	01	
	 F0?	 16	23	00	
	 RTN	 24	
	 F2?	 16	23	02	
	 GTO	9	 22	09	
	 X=0?	 16-43	
	 RTN	 24	
	 SF2	 16	21	02	
	*LBL	9	 21	09	
	 RCL	0	 36	00	
	ST-	(i)	 35-45	45	
	 F2?	 16	23	02	
	ST-	(i)	 35-45	45	
	 RDN	 -31	
	 RTN	 24	
	*LBL	E	 21	15	
	 8	 08	
	 STO	I	 35	46	
	 2	 02	
	 1	 01	
	 8	 08	
	 4	 04	
	 5	 05	
	*LBL	4	 21	04	
	STO	(i)	 35	45	
	 DSZ	I	 16	25	46	
	 GTO	4	 22	04	
	 1	 01	
	 9	 09	
	 2	 02	
	 R/S	 51	
	 ST+	4	 35-55	04	
	 ST-	5	 35-45	05	
	 CLX	 -51	

	…Taht’s	all	Folks! 

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �2 14

Othello HP-67 40th / licence: Apache, Version 2.0

 VUE D’ENSEMBLE, TERMINOLOGY AND USER’S GUIDE

To the careful, to the demanding, to the purists, with all my consideration

Having written and commented this program, I decided to change some of the details to get closer to the official Othello game notation i.e. column-row and not row-
column,, etc. However, after making the necessary changes, I found the resulting code and comments were less intuitive (if that is possible). So I chose to roll back. You can
still make the A1 coordinate top-left, even if the included sample display spreadsheet (see below: displaying the board with a spreadsheet) is showing otherwise.
Side values are hard coded in the program. 1 for the calculator, -1 for it’s adversary, but two calculators can play one against the other (see below).
My initial goal was to fit an Othello playing program in the 224 steps available. As a programming exercise, it was a great experience. However, the
second stage of optimisation down to 180 steps for the main playing logic (i.e. not including the new game initialization setup) was the cherry on
the top.
For the rest, I’m happy to hand over to you.
I can hardly express how much happiness this project has given me. From the start to the end, for both of it's stages. I have a fond thought for all the people at Hewlett-
Packard who contributed to the birth of these calculators. I send them my warmest thanks.

In short

- The board in memory is base 4 encoded. The contents of each square can be one of three values: 0 represents a calculator’s disc, 1 an empty square, 2 an adversary’s disc.
These values are hard coded. In order to make two calculators play against each other, discs are placed symmetrically but the same values are used on both.

- The evaluation function is very simple: the more discs won (flipped), the better the score is
- Calculators and emulators: in my experience, the program runs smoothly on both 67 and 97 genuine calculators and on Olivier de Smet’s emulator (http://

sites.google.com/site/olivier2smet2/hp_projects/hp97). By the way, thank you Olivier.

Terminology

Board The 8 x 8 playing board

rowNum.colNum Coordinates of a square, separated by the decimal point. 
Columns are numbered here because the calculator has no alpha capabilities at all, neither
for input nor for output (A to E keys are for other purposes). 
Example: B6 is entered and displayed 6.2 
In this document, discs are represented by O (circles) and X (crosses) for practical reasons,
in place of white discs and black discs or vice versa.

Side Square outside of the board. Square coordinates being in the range 1.1 to 8.8, coordinates
having a 0 or a 9 are on the side the board.

start square Is the square from which an exploration is conducted from. This being either to find the
best possible move or the action of adding and flipping discs on the board when the
calculator or adversary effectively makes a move.

crossed square Designates each of the squares explored successively starting from the Start square and in each direction possible.

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �3 14

http://sites.google.com/site/olivier2smet2/hp_projects/hp97

Othello HP-67 40th / licence: Apache, Version 2.0

direction Represents in turn each possible direction in which exploration takes place to find discs that could or should be flipped. The value is in the
form delta_row.delta_column, denoted dr.dc, and is in the range 2.2 to 0.0. The value must first have the constant 1.1 subtracted, so it’s
effective range is from 1.1 to -1.1

central point is the combination between the start square and the nul direction

User’s guide

• Only the program needs to be entered in memory. Data initialization is done in LBL E. Anecdote: during testing on a 67, I entered a X≠0? program step instead of X=0?.

The result being subtly different, and subtly false, I thought I had to plan a hunt for a remaining bug…
• If you’d like to reclaim the memory space dedicated to LBL E to make an enhanced version of the program, you’ll have to enter the values in the memory registers 1

through 8 by hand. Or you could save the register values on magnetic cards before deleting LBL E. You will need two cards, one for playing the white and one for
playing the black and run the LBL E twice, one time with CHS key, one time without (see below).

Starting a new game:

• ! ! Forces the display to show a single decimal digit (this is not mandatory, it just makes the display easier to read)

• ! 192 [!] ! Initialises the board for a new game. When the display shows 192, the calculator waits for you to choose your side. You might choose to

 press R/S key straight away to make the calculator play with black discs, or press CHS key and then R/S key to reverse the setup
 and have the calculator play with white discs. This is also the way to make two calculators play against each other.
 The calculator displays	0.0 when it’s ready.

• rowNum.colNum ! To play first, enter your move (the coordinates of the square you want to place a new disc in). The game rules state that black plays first.

• or ! To let the calculator play first. Attention: if you do other calculations in the meantime, be sure to press CLX before pressing B

Continuing the game:

• When the calculator makes it’s move, it stops and displays the coordinates of the square it is putting a new disc in (rowNum.colNum)

• If it makes a valid move, take note and press ! to let it update it’s in-memory copy of the board. When finished it will stop and display 0.0 
Attention: the duration of this update can exceed one minute!

• If it passes it’s turn, it will display 0.0 Please DON’T press ! key in this case.

• It’s your go. Enter your move rowNum.colNum then press ! . If you pass your turn, leave 0.0 and press !  
Note: you are supposed to follow the rules of the game and the calculator does not check if your move is allowed.

Checking the in-memory copy of the board:

• ! ! to ! ! (one memory register per row)

DSP 1

E CHS R/S

B

B

R/S

R/S

R/S R/S

RCL 1 RCL 8

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �4 14

Othello HP-67 40th / licence: Apache, Version 2.0

Sample spreadsheet for displaying the in-memory base 4 encoded board:

• Cells M3 to T10 (please note: the English name of the function TRONQUE is TRUNC)

!

!

• Cells B3 to I10 (please note: English for SI is IF, and ENT translates to INT)

!

Note: formulas showed will always display Os for the calculator and Xs for the adversary. These are my notation choices. Feel free to find customizations that will fit your
taste.

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �5 14

Othello HP-67 40th / licence: Apache, Version 2.0

Warning…

…if you carry on reading,
you will find it easier :-)

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �6 14

Othello HP-67 40th / licence: Apache, Version 2.0

Memory registers allocation

• 0 temporary calculations
• 1 to 8 8 x 8 Othello board, base 4 encoded
• 9 Score for the move being evaluated (the "start square"), expressed in one of these two forms:
• p : integer representing the count of all found flippable discs in the directions already explored
• p.h where h represents the additional hypothetical gain (number of discs) for the direction currently under exploration.
• 10 à 19 unused
• A Current Direction: in the range 2.2 to 0.0 representing delta_x_+_1.delta_y_+_1 for the rows, columns and diagonals from the Start square
• B Start square coordinates  

- Either decremented from 8.8 to 1.1 (in fact 0.0) in the form rowNum.colNum to explore all possible moves 
- Or the coordinates of the square where a disc is added (by the calculator or adversary) to update the in-memory copy of the board

• C and D Best score found from the possible moves examined so far, and the coordinates of that best move
• E 1 means the calculator is the actual player, -1 means the adversary is the actual player

Flags f0 to f3 allocation, in order of importance

Command-cleared flags:
• f1 cleared=EVALUATION (search of possible moves for example), set=ACT (on the board by adding and by flipping discs)
• f0 Complimentary to flag 1 to perform an action on the board in two passes. cleared=NOW (2nd pass), set= LATER (postpone changes, 1st pass)
Test-cleared flags:
• f2 Central point indicator OR add/flip disc selector
• f3 Side indicator (coordinates are outside the board)

Some essential points concerning the operating characteristics of the HP-67 and 97 calculators

Branches A simple branch instruction (example GTO 9) transfers execution to the next occurrence of the label, starting from the step following the current step. If
such a label can not be found before step number 224 then the search for the label starts over from step 001. 
This gives the opportunity to use multiple occurrences of the same label number

 In the commented code, these multiple occurrences are suffixed to ease reading. Example: LBL 9, LBL 9 bis, etc. 
Also note that upper and lower case characters are differentiated : LBL A and LBL a are completely different

Flags Besides the peculiarity of flags 2 and 3 being automatically cleared when tested, in addition, there is no "if flag clear" instruction for any of the flags. The
only way to test flags is the instruction "if flag set". This leads to a few acrobatic conditional execution arrangements in the program.

RPN stack Conventional names are used in the code and comments for the registers X, Y, Z et T (for Top). and "Last X".

indirect addressingThe register dedicated to indirect addressing, the only "pointer" available, is named I (I as in… Indirect). 
- noted I in the code, for example STO I, the I register itself is involved (we’re manipulating the pointer)
- noted (i), means the register involved is the one whose number is stored in I. In this program, indirect addressing is not used for branches, only for
manipulating memory registers. 

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �7 14

Othello HP-67 40th / licence: Apache, Version 2.0

C O M M E N T E D C O D E

The essence and the charm of the exercise

The code contains many optimizations required to save program steps so that the whole program can fit available memory space. Also note that the
instruction set and the memory dispatching of these calculators are suited for calculations and are less appropriate for other uses such as games. Some
tricks were needed to overcome the imposed restrictions.
These optimizations and tricks show in the code as some of the "worst programming practices". Or not ;-)

• In this spirit, LBL 9 runs two threads in parallel: 
The first is making calculations to extract the contents of a given square (8 squares are encoded in each of the 8 registers storing one of the 8 rows of the
board), the second builds the appropriate value needed to add or flip a disc in that same square, in the event it will become useful later on. 
It is "la loi du genre": when some data is at hand, the maximum should be done with it to save program steps. 
The comments related to the second thread are grayed out to make it easier to follow each thread separately.

• Nearly all "end if" mentions are omitted. Combined conditional execution is usually commented and indentation in the comments should make the
missing end ifs obvious. I hope.

• The key codes listed are those from an HP-97, the printing model of the HP-67
• The Roll down instructions are written RDN not R followed by an arrow pointed downward (sorry, I was too lazy here)

As a final word, I’d say that writing the comments accompanying the code is not always the most interesting part of the adventure and that commenting
code across optimizations sometimes impairs readability. Moreover, English is not my native language and some terms I chose might not be the best fits.
Please, forgive any subpar descriptions. And of course, any comments or suggestions will be appreciated.

	 instruction	 HP-97	 Comments	
	 mnemonics	 key	codes	
	 ——————————	 ———————-	 ———-	
	 *LBL	A	 21	11	 Board	level	(it	is	calculator’s	turn)	
	 1	 01	 	 	 E	<-	calculator’s	turn	
	 STO	E	 35	15	
	 8	 08	 	 	 start	square	<-	the	search	for	possible	moves	begins	at	square	8.8	down	to	1.1	
	 .	 -62	
	 8	 08	
	 STO	B	 35	12	 	 	 	
	 CLX	 -51	 	 	 zeroing	best	move	
	 STO	C	 35	13	 	 	 	 score	
	 STO	D	 35	14	 	 	 	 and	coordinates	

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �8 14

Othello HP-67 40th / licence: Apache, Version 2.0

	 *LBL	a	 21	16	11	 ——-	 start	square	level	
	 CLX	 -51	 	 	 zeroing	
	 STO	9	 35	09	 	 	 	 score	(cumulative	wins	obtained	by	adding	a	disc	in	start	square)	
	 STO	A	 35	11	 	 	 	 current	exploration	direction	
	 RCL	B	 36	12	 	 	 start	square	(or	coordinates	for	the	move	the	board	is	updated	for)	
	 CF2	 16	22	02	 	 	 central	point	indicator	<-	false	(Direction	-	1.1	=	-1.1	not	0)	
	 GSB	9	 23	09	 	 	 pre-examination	(coordinates	inside/outside	board	?	empty	square	?)	
	 	 	 	 	 	 with	an	exploration	direction	set	to	0	because:	
	 	 	 	 	 	 	 -	if	appropriate,	artificially	triggers	a	skip	to	the	next	start	square	at	the	
	 	 	 	 	 	 	 time	the	skip	to	the	next	Direction	is	triggered	
	 	 	 	 	 	 	 -	and	by	the	way,	replace	GTO	2	below	by	GTO	0,	the	code	in	LBL	0	becomes	transparent	
	 	 	 	 	 	 	 in	this	particular	condition,	except	leaving	the	value	-0.1	on	the	stack,	thus	
	 	 	 	 	 	 	 saving	program	steps	(sign,	decimal	point	and	digit	1	not	duplicated)	
	 X=0?	 16-43	 	 	 optimized	code	replacing	"X≠0?	GTO	0	F3?	GTO	0"	I	mean:	
	 F3?	 16	23	03	 	 	 if	the	square	is	not	empty	OR	coordinates	are	on	a	side	of	the	board	
	 GTO	0	 22	00	 	 	 	 end	exploration	for	this	start	square	(GTO	0	not	GTO	2	as	explained	before)	
	 	 	 	 	 Attention:	it	is	not	a	true	replacement	for	the	original	code	"F3?	GTO	0	x≠0?	GTO	0",	that	
	 	 	 	 	 cleared	the	flag	f3	by	the	way	in	all	cases	and	made	the	x≠0?	test	consistent.	
	 	 	 	 	 So,	why	retain	the	change	(saving	one	program	step)	?	
	 	 	 	 	 -	This	particular	optimization	without	swapping	the	tests	is	not	possible	because	it	is	not	
	 	 	 	 	 possible	to	invert	test	F3?	(no	if	flag	clear	instruction).	
	 	 	 	 	 -	in	case	a	side	is	hit,	X	can	not	represent	the	contents	of	the	square	(the	square	does	not	exist)	
	 	 	 	 	 and	the	test	X=0?	is	either	adequate	by	chance,	or	transparent	except	for	f3	staying	set.	
	 	 	 	 	 -	in	the	case	the	square	is	inside	the	board,	X	holds	the	contents	of	the	square.	if	it	is	not	
	 	 	 	 	 0	because	the	square	is	not	empty,	execution	effectively	GTO	0,	else	the	flag	f3	not	being	set,	
	 	 	 	 	 the	execution	goes	on	with	LBL	b	because	GTO	0	is	stepped	over	

	 *LBL	b	 21	16	12	 	 OK,	It	seems	that	start	square	is	a	good	candidate	to	add	a	disc	
	 2	 02	 	 	 Initialize	exploration	Direction	to	2.2	
	 .	 -62	 	 	 	 (will	successively	be	2.1	then	2.0,	1.2,	1.1,	1.0,	0.2,	0.1	et	0.0	values	from	which,	
	 2	 02	 	 	 	 by	subtracting	1.1,	we	get	the	"delta_x.delta_y"	in	the	1.1	to	-1.1	range	
	 STO	A	 35	11	 	 	 	 that	will	be	added	repeatedly	to	obtain	the	coordinates	for	each	crossed	square	following	
	 	 	 	 	 	 each	exploration	direction:	row,	column	and	diagonal	

	 *LBL	c	 21	16	13	 ——-	 Direction	level	
	 SF0	 16	21	00	 	 	 f0	<-	LATER	(in	case,	action	on	the	board	begins	by	first	pass)	

	 *LBL	d	 21	16	14	 	 	 Direction	exploration	always	starts	at	start	square	
	 RCL	B	 36	12	 	 	 	 Copy	the	coordinates	of	start	square	in	the	register	
	 STO	I	 35	46	 	 	 	 dedicated	to	indirect	addressing.	It	will	point	toward	crossed	squares	

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �9 14

Othello HP-67 40th / licence: Apache, Version 2.0

	 *LBL	e	 21	16	15	 ——-	 Crossed	square	level	(going	on	with	exploration	for	that	direction	with	the	next	crossed	square)	
	 RCL	A	 36	11	 	 	 Direction	in	the	range	2.2	to	0.0	
	 1	 01	 	 	 	 1.1	=	central	point	
	 .	 -62	
	 1	 01	
	 -	 -45	 	 	 dr.dc	<-	Direction	-	1.1	(now	in	the	range	1.1	to	-1.1)	
	 X=0?	 16-43	 	 	 if	the	Direction	dr.dc	is	0.0,	it	is	not	a	"real"	direction,	it	is	the	central	point	
	 CF0	 16	22	00	 	 	 	 act	NOW	
	 X=0?	 16-43	 	 	 	 with	
	 SF2	 16	21	02	 	 	 	 central	point	indicator	<-	true	
	 RCL	I	 36	46	 	 	 crossed	square	coordinates	<-	previous	crossed	square	coordinates	+	dr.dc	
	 +	 -55	
	 GSB	9	 23	09	 	 	 examination	of	the	coordinates	of	the	crossed	square	and	its	contents	
	 F3?	 16	23	03	 	 	 if	the	crossed	square	is	on	a	side	
	 CLX	 -51	 	 	 	 simulate	the	encounter	of	an	empty	square	
	 X=0?	 16-43	 	 	 if	the	crossed	square	is	empty	
	 GTO	0	 22	00	 	 	 	 end	exploration	for	this	Direction	with	cancelation	of	hypothetically	won	discs,	etc.	
	 X<0?	 16-45	 	 	 if	the	square	contents	is	a	disc	owned	by	the	actual	player	
	 GTO	1	 22	01	 	 	 	 switch	to	2nd	pass	or	end	exploration	for	this	Direction	(etc.)	depending	on	context	
	 .	 -62	 	 	 else	the	square	contains	a	disc	belonging	to	the	other	player	
	 1	 01	 	 	 	 add	0.1	to	the	score	(means	1	disc	hypothetically	won	in	that	direction)	
	 ST+	9	 35-55	09	 	 	 	 the	evaluation	function	is	very	simple:	"the	more	I	flip	discs,	the	better"	
	 GTO	e	 22	16	15	 	 	 Continue	with	this	Direction	with	the	next	crossed	square	

	 *LBL	1	 21	01	 	 What	to	do	when	Direction	exploration	ends	?	(next	lines	of	code:	remember	there	is	no	if	flag	clear…)	
	 F1?	 16	23	01	 	 	 if	ACT	
	 X>0?	 16-44	 	 	 	 test	whose	result	is	always	false	to	compensate	for	the	missing	of	if	flag	clear	
	 GTO	0	 22	00	 	 	 so,	is	equivalent	to	If	EVALUATION	then	amalgamate	the	score	and	program	the	next	Direction		
	 F0?	 16	23	00	 	 	 if	LATER	(end	of	1st	pass)	
	 X>0?	 16-44	 	 	 	 test	whose	result	is	always	false	to	compensate	for	the	missing	of	if	flag	clear	
	 GTO	0	 22	00	 	 	 so,	is	equivalent	to	If	NOW	(end	of	2nd	pass)	then	amalgamate	the	score	etc.	
	 CF0	 16	22	00	 	 	 else			 NOW	(end	of	1st	pass,	switch	to	2nd	pass)	
	 GTO	d	 22	16	14	 	 	 	 	 and	redo	Direction	from	Start	square	to	effectively	flip	the	discs	

	 *LBL	0	 21	00	 Amalgamate	the	score	and	program	the	next	Direction	
	 RCL	9	 36	09	 	 The	count	of	hypothetically	won	discs	for	the	current	Direction	is	stored	
	 FRC	 16	44	 	 	 in	the	decimal	part	of	the	register	holding	the	score	and	now	that	we	have	it	
	 ST-	9	 35-45	09	 	 	 we	can	clean	up	the	score	register	to	its	integer	value	before	that	direction	exploration	
	 1	 01	 	 This	count	needs	to	be	
	 0	 00	 	 	 transformed	into	an	integer	
	 x	 -35	 	 	 to	be	added	to	the	score,	but	also	

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �10 14

Othello HP-67 40th / licence: Apache, Version 2.0

	 x	 -35	 	 multiplied	by	the	input	value	(contents	of	the	square	or	equivalent),	remember:	
	 	 	 	 	 0	(no	discs	to	flip)	
	 	 	 	 	 -	if	exploration	of	Direction	ends	on	a	side	of	the	board	
	 	 	 	 	 -	if	exploration	of	Direction	ends	with	an	empty	square	
	 	 	 	 	 9	only	after	a	pre-examination,	when	the	hypothetical	gain	is	0	
	 	 	 	 	 -	if	exploration	of	Direction	ends	on	a	side	of	the	board	
	 	 	 	 	 or	-1	(discs	to	flip)	
	 	 	 	 	 -	if	exploration	of	Direction	ends	with	a	square	whose	disc	belongs	to	the	actual	player	
	 ST-	9	 35-45	09	 	 …	for	a	final	result:	the	number	of	discs	actually	flipped/flippable	(a	negative	number)	
	 RCL	A	 36	11	 	 Programing	the	next	Direction	
	 .	 -62	 	 	 2.2	->	2.1	->	2.0	->	1.2	etc.	
	 1	 01	 	 	 	 dr.dc	is	used	with	rowNum.colNum	
	 -	 -45	 	 	 	 by	simply	adding	both	values	and	compensating	the	1.1	offset	
	 STO	A	 35	11	 	 	 next	direction	
	 X<0?	 16-45	 	 	 if	next	Direction	is	below	0	(all	Directions	have	already	been	explored	for	this	start	square),	
	 GTO	2	 22	02	 	 	 	 exploration	for	this	start	square	is	over,	we	leave	-0.1	in	X	
	 FRC	 16	44	 	 	 else	exploration	for	this	start	square	is	to	be	continued,	
	 .	 -62	 	 	 	 	 in	the	condition	to	adjust,	when	appropriate,	the	new	Direction	value	to	stay	within	
	 2	 02	 	 	 	 	 authorized	values	(2.2	to	2.0	or	1.2	to	1.0	or	0.2	to	0.0)	
	 X>Y?	 16-34	 	 	 	 if	the	decimal	part	is	below	0.2,	the	value	for	the	Direction	is	OK	
	 GTO	c	 22	16	13	 	 	 	 	 go	explore	that	new	Direction	(run	67,	run!)	
	 LSTX	 16-63	 	 	 	 else	
	 INT	 16	34	 	 	 	 	 the	correct	value	for	the	Direction	is	obtained	by	adding	to	the	integer	part	(0	ou	1)	
	 +	 -55	 	 	 	 	 the	value	0.2	
	 STO	A	 35	11	 	 	 	 	 now,	the	next	direction	is	OK	
	 GTO	c	 22	16	13	 	 	 	 	 go	explore	that	new	Direction	

	 *LBL	2	 21	02	 End	of	exploration	for	this	start	square	(all	directions	have	been	followed)	
	 F1?	 16	23	01	 	 if	ACT	
	 GTO	3	 22	03	 	 	 we	just	added	and	flipped	discs	on	the	board,	whose	turn	is	it	?	
	 RCL	B	 36	12	 	 else	
	 +	 -55	 	 	 add	the	-0.1	value	left	on	the	stack	to	the	coordinates	of	the	start	square	
	 STO	B	 35	12	 	 	 to	set	the	coordinates	of	the	new	start	square	(8.8	->	8.7	->	…	->	0.0	->	-0.1)	
	 RCL	C	 36	13	 	 Compare	the	best	score	for	the	best	move	so	far	
	 RCL	9	 36	09	 	 with	the	score	for	the	start	square	we	just	examined	
	 X≤Y?	 16-35	 	 if	it	is	not	better	
	 GTO	2	bis	 22	02	 	 	 skip	the	following	program	steps	that	store	the	new	best	move	
	 STO	C	 35	13	 	 else	remember	the	new	best	score	
	 LSTX	 16-63	 	 	 and	the	coordinates	of	the	start	square	(for	which	we	just	closed	evaluation)	
	 STO	D	 35	14	 	 	 as	the	new	best	move	
	 *LBL	2	bis	 21	02	 Next	Start	square	or	end	the	board	?	

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �11 14

Othello HP-67 40th / licence: Apache, Version 2.0

	 RCL	B	 36	12	 	 if	the	coordinates	of	the	new	start	square	
	 X>0?	 16-44	 	 are	over	0.0,	we’re	not	done	yet	with	all	those	squares	from	8.8	(plethora	isn’t	it?)	
	 GTO	a	 22	16	11	 	 	 Goes	on	with	the	new	start	square	(Life	is	a	box	of	chocolates)	
	 RCL	D	 36	14	 	 else	displays	the	best	move	
	 X=0?	 16-43	 	 	 If	the	calculator	passes	its	turn	
	 GTO	3	 22	03	 	 	 	 no	update	of	the	board	is	needed	
	 STO	B	 35	12	 	 	 else	1)	copies	the	best	move	coordinates	to	start	square	to	prepare	for	the	board	update	
	 R/S	 51	 	 	 	 2)	then	stops	to	let	the	adversary	take	note	of	the	move	
	 SF1	 16	21	01	 	 	 	 3)	chooses	ACT	
	 GTO	b	 22	16	12	 	 	 	 4)	and	updates	the	board	

	 *LBL	3	 21	03	 Switch	between	the	calculator	and	adversary	-	part	1	-	should	the	calculator	stop	to	let	adversary	play	?	
	 RCL	E	 36	15	 	 Who	is	playing	right	now	(-1	=	adversary,	1	=	calculator)	?	
	 0	 00	 	 displays	0	whatever	(signals	to	the	adversary	that	it	is	its	turn,	etc.)	
	 X≤y?	 16-36	 	 if	the	calculator	is	playing	
	 R/S	 51	 	 	 stop	execution	and	display	0	waiting	for	the	adversary	to	enter	its	move	and	press	R/S	key	
	 *LBL	B	 21	12	 Switch	between	the	calculator	and	adversary	-	part	2	-	if	adversary	passes,	its	calculator’s	turn	
	 CF1	 16	22	01	 	 EVALUATION	(in	the	event	the	adversary	passes	its	turn)	
	 X=0?	 16-43	 	 if	adversary	passes	its	turn	
	 GTO	A	 22	11	 	 	 it	is	calculator’s	turn	so	execution	starts	over	with	the	fetch	for	a	new	move	
	 STO	B	 35	12	 Switch	between	the	calculator	and	adversary	-	part	3	-	start	square	<-	the	move	of	the	adversary	
	 SF1	 16	21	01	 	 	 ACT	to	update	the	board,	adding	and	flipping	discs	accordingly	
	 SF0	 16	21	00	 	 	 LATER	(1st	pass)	helps,	during	pre-examination,	to	detect	a	move	in	a	non-empty	square	
	 1	 01	 	 	 	
	 CHS	 -22	
	 STO	E	 35	15	 	 	 E	<-	—1	(prepares	to	act	on	behalf	of	the	adversary)	
	 GTO	a	 22	16	11	 	 	 add	and	flip	discs	on	the	board	(will	automatically	go	on	with	the	fetch	for	the	next	move)	

	 *LBL	9	 21	09	 What	is	possible	with	these	coordinates	?	
	 STO	I	 35	46	 	 pointer	<-	rowNum.colNum	
	 SF3	 16	21	03	 	 First,	detect	the	sides	of	the	board	
	 INT	 16	34	 	 	 rowNum	
	 X=0?	 16-43	 	 	 if	rowNum	=	0	
	 RTN	 24	 	 	 	 return,	out	(bottom	side)	
	 9	 09	 	 	
	 X=Y?	 16-33	 	 	 if	rowNum	=	9	
	 RTN	 24	 	 	 	 return,	out	(top	side)	
	 LSTX	 16-63	 	 	 rowNum.colNum	
	 FRC	 16	44	 	 	 colNum	is	in	the	decimal	part	
	 1	 01	
	 0	 00	

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �12 14

Othello HP-67 40th / licence: Apache, Version 2.0

	 x	 -35	 	 	 colNum	
	 X≠0?	 16-42	 	 	 optimization:	if	not	left	side	(the	initial	code	was	x=0?	RTN	x=y?	RTN)	
	 X=Y?	 16-33	 	 	 test	for	right	side	
	 RTN	 24	 	 	 return	if	out	(left	or	right	side)	else	goes	on	
	 CF3	 16	22	03	 	 rowNum	and	colNum	are	both	inside	the	board	
	 RCL	(i)	 36	45	 	 	 contents	of	the	row	rowNum	(stack	XYZT:	row	rowNum,	colNum…)	
	 X<>Y	 -41	 	 	 Isolating	the	square	colNum	(stack	XYZT:	colNum,row	rowNum…)	
	 4	 04	 	 	 	 the	board	is	base	4	encoded	(stack	XYZT:	4,	colNum,row	rowNum)	
	 X<>Y	 -41	 	 	 (stack	XYZT:	colNum,	4,	row	rowNum…)	
	 Yx	 31	 	 	 (stack	XYZT:	4^colNum,	row	rowNum…)	
	 STO	0	 35	00	 	 	 r0	<-	4^colNum	=	building	the	value	to	be	used	later	for	disc	addition/flipping	in	this	square	
	 ÷	 -24	 	 	 row	rowNum	/	4^colNum	
	 FRC	 16	44	 	 	 strips	the	squares	on	the	left,	contents	of	square	colNum	is	just	after	the	decimal	point	
	 4	 04	
	 ST÷	0	 35-24	00	 	 	 r0	<-	4^(colNum-1)	=	the	value	to	be	used	in	fine,	but	still	unsigned	
	 x	 -35	 	 	 contents	of	the	square	colNum	is	now	before	decimal	point,	in	the	range	0	to	2	(1	=	empty	square)	
	 INT	 16	34	 	 	 strips	the	squares	on	the	right	->	X	=	contents	of	square	rowNum.colNum,	finally	
	 1	 01	
	 -	 -45	 	 	 contents	of	the	square	rowNum.colNum	in	the	range	-1	to	+1	(0	=	empty	square)	
	 RCL	E	 36	15	 	 	 adjusting	with	who	is	the	player,	the	calculator	or	the	adversary	
	 STx	0	 35-35	00	 	 	 r0	<-	4^(colNum-1)	signed	=	final	value	to	be	used	later	for	disc	addition/flipping	in	this	square	
	 x	 -35	 	 	 to	find	out	if	the	disc	belongs	to	the	one	the	action	is	done	for	
	 x<0?	 16-45	 	 	 if	the	disc	belongs	to	the	actual	player	
	 RTN	 24	 	 	 	 return	
	 F1?	 16	23	01	 	 	 else		 optimized	code	for:	
	 F0?	 16	23	00	 	 	 	 	 if	EVALUATION	or	LATER	(1st	pass)	
	 RTN	 24	 	 	 	 	 	 return	
	 	 	 	 Action	on	the	board	now	has	to	be	taken	
	 	 	 	 	 To	sum-up:	
	 	 	 	 	 	 if	it	is	the	central	point,	a	disc	needs	be	added	for	the	actual	player	
	 	 	 	 	 	 else,	if	the	square	is	empty,	this	is	the	end	of	the	explored	Direction	
	 	 	 	 	 	 else,	the	disc	must	be	flipped	
	 	 	 	 	 	 Attention:	
	 	 	 	 	 	 	 in	case	of	a	pre-examination	(from	LBL	a),	the	central	point	indicator	is	not	
	 	 	 	 	 	 	 set	as	such	
	 	 	 	 	 	 	
	 F2?	 16	23	02	 	 	 if	central	point	indicator	is	set	
	 GTO	9	bis	 22	09	 	 	 	 will	add	a	disc	on	the	board	
	 	 	 	 	 	 and	clears	the	flag	2	by	the	way,	
	 	 	 	 	 	 so	f2	can	be	reused	because	it	is	cleared	whatever,	I	love	it	
	 X=0?	 16-43	 	 	 else,	if	the	square	is	empty	

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �13 14

Othello HP-67 40th / licence: Apache, Version 2.0

	 RTN	 24	 	 	 	 return	(end	of	exploration	for	this	direction)	
	 SF2	 16	21	02	 	 	 else	the	next	thing	to	be	done	on	the	board	will	be	a	disc	flip	
	 *LBL	9	bis	 21	09	 	 Adding	or	flipping	a	disc	in	square	rowNum.colNum	
	 RCL	0	 36	00	 	 	 signed	value	for	action	in	colNum	(x	1	to	add	disc,	x	2	to	flip	disc)	
	 ST-	(i)	 35-45	45	 	 	 modifying	the	contents	of	the	square	(adding	a	disc)	in	the	row	
	 F2?	 16	23	02	 	 	 if	action	is	flipping	
	 ST-	(i)	 35-45	45	 	 	 	 complete	the	action	on	the	contents	of	the	square	(flipping	a	disc)	in	the	row	
	 RDN	 -31	 	 recalls	the	contents	of	the	square	before	the	disc	was	added	or	flipped	
	 RTN	 24	 	 return	

	 *LBL	E	 21	15	 Board	initialization	for	a	new	game	
	 8	 08	 	 8	rows	to	initialize	
	 STO	I	 35	46	
	 2	 02	 	 an	empty	row	is	encoded	21845	
	 1	 01	 	 	 ((((((1x4+1)x4+1)x4+1)x4+1)x4+1)x4+1)x4+1	
	 8	 08	 	 	 you’re	right,	this	is	not	Reverse	Polish	Notation	:-)	
	 4	 04	
	 5	 05	
	 *LBL	4	 21	04	 	 For	each	memory	register	in	the	range	8	to	1	
	 STO	(i)	 35	45	 	 	 Initialize	the	row	with	the	value	for	an	empty	one	
	 DSZ	I	 16	25	46	 	 	 i	<-	i	-	1	and	while	i	>	0…	
	 GTO	4	 22	04	 	 …next	row	please	
	 1	 01	 	 Adding	X	and	O	discs	to	start	the	game	
	 9	 09	
	 2	 02	
	 R/S	 51	 	 Waits	for	the	adversary	to	choose	his(her)	side	
	 	 	 	 	 -	presses	strait	on	the	R/S	key	to	let	the	calculator	play	with	the	black	discs	
	 	 	 	 	 -	presses	CHS	key	then	R/S	key	to	let	the	calculator	play	with	the	white	discs	
	 ST+	4	 35-55	04	 	 OX	ou	XO	added	in	row	4	
	 ST-	5	 35-45	05	 	 XO	ou	OX	added	in	row	5	
	 CLX	 -51	 Ready!

© 2016 Jean-Marc VERNIAJOU
OTHELLO is a registered trademark: TM & © Othello,Co. and MegaHouse

hello [at] jmverniajou [dot] com Document version 1.1 EN - Page � / �14 14

